
Olivier von Dach Software Craftsman

Behaviour-Driven Development

for better software products
31 May 2021

We need to minimize friction due to misunderstandings between

software development and software specification teams,

proposing an innovative approach for software specification. This

one should facilitate the common understanding and encourage

each stakeholder’s accountability, product person, software

engineer, test engineer, in the quality of the delivered increments.

Structure

https://vondacho.github.io/
https://ch.linkedin.com/in/vondacho
https://ch.linkedin.com/in/vondacho
https://github.com/vondacho
https://github.com/vondacho

1. The first part sets the current context with the traditional

approach based on the usual agile tools and roles, illustrating

some issues and suggesting remedies.

2. The second part outlines Behaviour-Driven Development

(BDD) as a recognised software crafting technique that can

address the issues listed.

3. The third part explains the concrete implementation of this

technique.

4. The fourth part provides immediately usable material for

trying it out.

Context

Traditional approach

Backlog building

The product owner listens to customer needs, he owns and

manages a product backlog composed of features that extend the

current product capabilities or current system behaviour.

Features understanding

The product owner explains the expected system behaviour to

software and test engineers; they try to align their mental

representation with the product owner’s one challenging him with

their perspective during backlog grooming or feature kick-off

sessions.

Software delivery

Every delivered functional increment is verified by the test

engineer; he checks the completeness and the correctness, and

with the best effort, the absence of regression. Anomalies are

returned to the development team for the next delivery.

Some weaknesses and remedies

Anomalies

Anomalies due to misalignments or lack of quality in the realisation

can cause time-consuming ping-pong loops.

Could an innovative approach that re-establishes a contractual

element encourage greater accountability of each stakeholder for

the quality of delivery?

Cost of regression tests

The testing activity usually focuses on checking newly added

features and regressions. Regression testing activity is time-

consuming and should be automatized, or unfortunately, may be

shortened to well-selected tests.

Could we innovate on the tester’s activity by automating it and

giving him more impact upstream?

Loss of trust

Anomalies, regressions, misalignments can have a bad impact on

the already established trust towards the product itself, outside or

even inside the product team.

Could a collaborative approach that promotes shared

accountability, transparency and regular feedback during

implementation build trust?

Tunnel effect

The absence of testable delivery for a couple of time means less

feedback, hence less opportunity to react to any misalignment.

Could the division of a feature into several deliverables containing

one or more scenarios facilitate deliveries and thus feedback

possibilities?

Lack of documentation

What does the system solve? What are the features? What are the

nominal and edge scenarios? What about testing evidence?

Agile software development manifesto aims to privilege working

software over comprehensive documentation. Therefore, the

sources of documentation about what the developed system

solves are production code, test code and mental and often

distributed knowledge. Consequently, more pressure is put on

well-crafted code. In addition, narrative sources of documentation

can still be valuable for setting the context, but they are usually

written at a high level and may no longer be aligned with the

behaviour of the completed system.

https://agilemanifesto.org/

Could a collaborative approach restore a lightweight, human-

readable digital artefact that contractually formalises common

understanding and be a source of living documentation that

provides features and testing evidence?

BDD

Behaviour-Driven Development (BDD) is a software development

technique with the main promise to facilitate shared understanding

and optimise software deliveries’ functional quality.

Secure software development

This technique helps to develop securely the right thing, which is

the expected system behaviour, and without causing functional

regression.

Contract-driven

This technique proposes a context for collaborative specification

which aims to establish shared understanding of the expected

system behaviour, and formalising this latter as a readable

contractual and executable specification on which acceptance

tests can be defined.

Domain-driven

The issued specification artefact uses a natural language based on

the domain language which is naturally understandable by every

stakeholder: product person, software and test engineers.

Documentation-driven

This artefact written with Gherkin syntax explains the system

behaviour based on examples grouped in scenarios that describe

the system use cases and the business rules.

https://specflow.org/gherkin-editor

Here is an example that uses a generic scenario to describe the

behaviour of a calculation function; the Examples section defines

the input and output values:

Rule: The stress amplitude is the ratio between shock valu
es of two stress driver shocks.

 Scenario Outline: Return expected stress amplitude for
compatible shock types

 Given a stress shock
 | driver-key | shock-type | shock-value |
 | <driver-key> | <shock-type> | <shock-value> |
 And another stress shock
 | driver-key | shock-type | shock-value
|
 | <driver-key> | <ref-shock-type> | <ref-shock-val
ue> |
 When calculating amplitude
 Then the returned amplitude is <amplitude>

 Examples:
 | driver-key | shock-type | shock-value | ref-shoc
k-type | ref-shock-value | amplitude |
 | Equity-USA | RELATIVE | 0.15 | RELATIVE
| 0.10 | 1.5 |
 | Equity-USA | RELATIVE | 0.25 | RELATIVE
| 0.10 | 2.5 |
 | Equity-USA | RELATIVE | -0.15 | RELATIVE
| 0.10 | -1.5 |

 | Equity-USA | ABSOLUTE | 3 | ABSOLUTE
| 2 | 1.5 |
 | Equity-USA | ABSOLUTE | 2 | ABSOLUTE
| 3 | 0.6667 |
 | Equity-USA | ABSOLUTE | 2 | RELATIVE
| 0.10 | - |
 | Equity-USA | RELATIVE | 0.15 | ABSOLUTE
| 2 | - |
 | Equity-USA | RELATIVE | 0.15 | RELATIVE
| 0 | - |
 | Equity-USA | ABSOLUTE | 2 | ABSOLUTE
| 0 | - |

More BDD scenarios: Blueprint API (Kotlin),

Test-driven

Coupled with Acceptance Test-Driven Development (ATDD), an

outside-in software development technique, the software

engineer automates the test cases and can be driven to the

completeness, correctness, and the absence of functional

regression when developing a feature increment.

BDD was originally named in 2003 by Dan North as a response to

test-driven development (TDD), including acceptance test or

customer test-driven development practices as found in extreme

programming.

https://github.com/vondacho/arch-blueprint-kotlin/tree/master/src/test/resources/features
https://dannorth.net/introducing-bdd

BDD in practice

Specification by example activity facilitates a common

understanding of expected behaviour based on examples. It

applies to a large set of use cases of any domain: calculation,

aggregation, orchestration, eventing, management, workflow.

Specification by example activity is done during Example

Mapping sessions.

Formalisation of expected system behaviour is done with

acceptance scenarios expressed with domain language and

formalized with Gherkin syntax.

It requires practice; finding good wording have to be learned

by doing; efficient wording can be easily understood, can be

validated, and can be automatized.

https://specflow.org/gherkin-editor

Automatization means the development of automatized

acceptance tests enabled by using glue code.

Development of production code is then driven by existing

acceptance tests (ATDD).

Three amigos

The conversations in the Specification by Example activity are the

result of the interaction of three actors with different perspectives,

brought together for the same purpose: Product person or domain

expert, software engineer, and test engineer.

The Product person should be the product owner; the Domain

expert (business analyst, domain architect, or business owner) can

be a substitute of the Product person; the Customer can be an

optional stakeholder.

Example mapping

An Example mapping session facilitates structured conversations

between the three amigos.

It allows identifying user stories, open questions, business rules,

and examples.

xebia.com/blog/example-mapping-steering-the-

https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.xebia.com/blog/example-mapping-steering-the-conversation/

conversation

Feature, story, business rule, scenario, example

One feature is explained by one or more scenarios grouped in

stories.

One story usually groups one or more scenarios and

represents a feature increment with business value.

One business rule is usually supported by one or more

scenarios or examples.

One scenario is supported by one or more examples.

One scenario by nominal case.

One scenario by edge case.

One scenario by negative or error case.

Scenarios writing

Writing scenarios helps to build up the common ubiquitous

language in a way that everyone can understand and validate.

As it requires some experience and a particular way of thinking, it

is recommended to let this activity to the test engineer or the

software engineer. Feedback by the Product person can be done

once they have drafted the Gherkin specification.

https://www.xebia.com/blog/example-mapping-steering-the-conversation/
https://specflow.org/gherkin-editor

A scenario is composed of a set of preconditions about the initial

state or context, then a set of actions (usually one), then a set of

assertions (or postconditions) about the final state or context.

Feature: To be able to manage a set of existing clients in
a persistent way

 Background:
 Given a following set of existing clients
 | model-id | id |
name | internal | prospect | owners | tags | creation
-date |
 | 1 | ce751f30-217a-422c-b81b-8f75df4917b6 |
client1 | true | false | x | key1:a | 2020-10-
10T12:00:00 |
 | 2 | 29e364b9-f5ef-43d9-9f30-e07a30b73e01 |
client2 | true | true | - | - | 2020-10-
09T12:00:00 |

 Rule: An existing client is a persisted resource in the
system.

 Scenario: Add a new client to the existing clients

 Given a following set of client attributes
 | name | prospect | owners | tags |
 | test | true | owner1 | key:test,key1:a |
 And the next identifier is afd9ce9f-ee0e-4547-8c77-3
cc43ec85dbc
 And the next timestamp is 2020-10-11T12:00:00

 When registering the new client
 Then the response status is CREATED
 And the attributes of the returned client are the fo
llowing
 | id | name | pr
ospect | owners | tags | creation-date |
 | afd9ce9f-ee0e-4547-8c77-3cc43ec85dbc | test | tr
ue | owner1 | key:test,key1:a | 2020-10-11T12:00:00 |
 And the returned client is added to the set of exist
ing clients
 And no export of the configuration has been triggere
d
 And a Slack notification has been sent

More BDD scenarios: Blueprint API (Kotlin),

Scenarios validation

Every scenario has to be validated by every stakeholder or amigo,

that it describes an expected facet of the system behaviour. As a

result, shared understanding is materialized into a digital set of

acceptance scenarios that establish a contract between all

stakeholders.

These acceptance scenarios are the foundation of an executable

specification and the building blocks for the definition of

acceptance tests.

https://github.com/vondacho/arch-blueprint-kotlin/tree/master/src/test/resources/features

Acceptance testing

Acceptance tests support high-level functional testing which

includes testing of new feature increment and regression testing.

This activity is usually done by a test engineer of a quality

insurance team to validate a delivered feature increment before its

deployment to production.

Non-functional requirements could be tested by specific

acceptance tests.

ATDD

ATDD is a test-driven development technique based on

acceptance tests used by the software engineer for driving its

development to the expected system behaviour.

Given an acceptance scenario, a failing acceptance

test is written first, then the software engineer writes

the minimal production code to make it pass. This

action is repeated with a next acceptance scenario,

coupled with a refactoring phase applied to both

test and production code, to take care of well-

crafted code and design.

This cycle executed at the feature level contains an

inner TDD cycle performed at the component level,

this technique is named Outside-in TDD.

BDD and ATDD

ATDD is used with BDD to automate acceptance scenarios: one

scenario gives one acceptance test.

BDD glue code, test code, and production code

Test code implements acceptance tests and interacts with the

production code.

BDD glue code implements the mapping of BDD steps writen

in natural language into test code.

BDD steps are mapped by BDD glue code into test code

writen in a given technology.

BDD framework (Cucumber, Behave) traverses the steps and

automatizes the execution of the test code.

https://cucumber.io/docs/guides/overview/
https://behave.readthedocs.io/en/stable/

@Given("a stress shock") // glue code
fun oneShock(shock: List<TestShock>) { // glue code
 // test code: fixture
 ctx.put("one-stress-shock", shock.first())
}

@Given("another stress shock") // glue code
fun anotherShock(shock: List<TestShock>) { // glue code
 // test code: fixture
 ctx.put("other-stress-shock", shock.first())
}

@When("calculating amplitude") // glue code
fun calculateAmplitude() { // glue code
 // test code: action
 val one: TestShock = ctx.byId("one-stress-shock")
 val other: TestShock = ctx.byId("other-stress-shock")
 runCatching {
 AmplitudeComputer().compute(one.toShock(), other.t
oShock()) // production code

 }.getOrNull()
 ?.let { ctx.put("result-amplitude", it) }
}

@Then("the returned amplitude is {word}") // glue code
fun returnedAmplitudeValueIs(expected: String) { // glue c
ode
// test code: assertion
 val resultAmplitude: Double? = ctx.byIdOpt("result-amp
litude")
 val expectedAmplitude = expected.toNullable()?.toDoubl

e()
 if (resultAmplitude != null)
 assertThat(resultAmplitude).isCloseTo(expectedAmpl
itude, offset(0.001))
 else
 assertThat(expectedAmplitude).isNull()
}

BDD with acceptance test, scope

Well-written BDD scenarios are done using domain language

which is naturally high-level so that one scenario could be

automated for targetting either a user interacting with a frontend

application, or a web API, or a component that supports

application logic or domain logic. A specific glue code developed

for each target enables this decoupling.

Examples:

Blueprint API - AT at API level

Blueprint API - AT at domain level

BDD with acceptance test vs xUnit tests

Acceptance tests are high-level integration tests defined at

feature-level. Supported by the natural language and the Gherkin

syntax, their self-documentation is accessible to every stakeholder

and emphasizes the implemented and tested behaviour with its

preconditions and postconditions. Acceptance tests usually cover

functional requirements, and could check non-functional ones as

well. Smoke tests can be supported by a subset of acceptance

tests.

xUnit tests, due to their technical aspect, do not connect every

stakeholder, hence do not provide evidence of which functional

requirements are implemented and tested.

BDD and agility

Agile ideology influences methodologies for iterative

development of small increments, enabling quick feedback and

adapt.

https://github.com/vondacho/arch-blueprint-kotlin/tree/master/src/test/kotlin/edu/software/craftsmanship/blueprint/at/client
https://github.com/vondacho/arch-blueprint-kotlin/tree/master/src/test/kotlin/edu/software/craftsmanship/blueprint/at/problemSolving
https://specflow.org/gherkin-editor

Delivering the most valuable scenarios inside one or more stories

has a natural priority, then further valuable set of scenarios can be

delivered in other increments.

Scenarios are developed against single acceptance tests which

can be executed by a continuous integration tool. This tooling can

be configured to monitor which scenarios have been delivered

and which ones are still under development. This promotes

transparency and enables feedback, early reaction, and prediction

towards the deadline.

plugins.jenkins.io/cucumber-reports/

Living documentation

Living documentation is made possible based on BDD-driven

specification with tooling provided by Serenity-BDD.

Evidence of system well-being

With Serenity-BDD test execution reports tooling, proof of

evidence can be provided to auditors that all requirements

covered by the system in place are supported by

documented and continuous acceptance tests. It supports

Java technology only.

With Allure test execution reports tooling, more evidence can

be provided to auditors that testing is done in-depth, even at

the lower levels of the test pyramid i.e component integration

testing and component unit testing, and uniformly for a

couple of technologies (Python/Go/Java/Kotlin).

Summary

Outcomes

https://plugins.jenkins.io/cucumber-reports/
https://serenity-bdd.github.io/
https://serenity-bdd.github.io/
https://docs.qameta.io/allure/

Common understanding of expected system behaviour

expressed in a domain-oriented ubiquitous language.

Enhanced probability that the implemented thing is the right

one.

Human-readable, contractual and executable specification

directly useable by every actor of the development team.

Scenario-based, use-case-driven and domain-driven

documentation of system behaviour.

Scenario-based organization and survey of feature

development.

Innovation brought to the tester role, the test engineer can

now have a significant impact on the development.

Costs

Time: to attend, organize and facilitate Example mapping

meetings

Time: to learn one new technique

Time: to learn how to write BDD-scenarios

Time: to setup a BDD-framework

Time: to craft reusable glue code and test code

Time + Money: to maintain Gherkin phrasing, glue code and

test code

This technique should reveal itself as a sustainable investment in

product quality.

BDD material

Technical setup

Ready to use blueprints are available as BDD starters for some

technology stack:

Java BDD blueprint (Cucumber)

Kotlin BDD blueprint (Cucumber)

References

Literature

Example Mapping

BDD in Action

Serenity-BDD

Links

Cucumber BDD framework

Behave BDD framework

Allure test reporting

https://github.com/vondacho/arch-blueprint-java
https://github.com/vondacho/arch-blueprint-kotlin
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.manning.com/books/bdd-in-action
https://serenity-bdd.github.io/
https://cucumber.io/docs/guides/overview/
https://behave.readthedocs.io/en/stable/
https://docs.qameta.io/allure/

Related posts

About me 14 Apr 2025

Technical Excellence or the mastery of practices 22 Feb

2020

Software Craftsmanship is above all a mindset 22 Feb 2020

https://vondacho.github.io/2025/04/14/about-me/
https://vondacho.github.io/2020/02/22/technical-excellence/
https://vondacho.github.io/2020/02/22/technical-excellence/
https://vondacho.github.io/2020/02/22/software-craftsman/

